The differentiation potential of precursor cells from the mouse lateral ganglionic eminence is restricted by in vitro expansion.

نویسندگان

  • C Skogh
  • M Parmar
  • K Campbell
چکیده

We have investigated whether the differentiation potential of attached cultures derived from the mouse lateral ganglionic eminence (LGE) is influenced by in vitro expansion. Primary neuronal cultures derived from the LGE give rise to neurons expressing the striatal projection neuron markers Islet1 (ISL1) and dopamine and cAMP-regulated phosphoprotein of 32 kilodaltons (DARPP-32) as well as the olfactory bulb interneuron marker Er81. Our previous results showed that after expansion in vitro, LGE precursor cells can be induced to differentiate into neurons which exhibit molecular characteristics of the LGE, such as the homeobox transcription factors DLX and MEIS2. We show here that while attached LGE cultures maintain Er81 expression through five passages, they lose the ability to generate ISL1- or dopamine and cAMP-regulated phosphoprotein of 32 kilodaltons-expressing neurons already after the first passage. This indicates that the expansion of LGE precursor cells restricts their differentiation potential in vitro. Interestingly, the undifferentiated LGE cultures retain the expression of both the Isl1 and Er81 genes, suggesting that precursor cells for both striatal projection neurons and olfactory bulb interneurons are present in these cultures. Thus the restriction in differentiation potential of the expanded LGE cultures likely reflects deficiencies in the differentiation conditions used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P50: Selective HCRTR2 Antagonism Increases Embryonic Mouse Cortex Neural Stem Progenitor Cells Proliferation

In multiple sclerosis Oligodendrocytes are obliterated by the immune system. neural stem/ progenitor cells (NS/P Cs) have the capacity to differentiate into mature myelinating oligodendrocytes. In embryonic mouse cortex oligodendrocyte progenitor cells (OPCs) are more abundant than the ganglionic eminence. Doing gene set enrichment analysis using DAVID and Panther websites it was shown that Gpr...

متن کامل

Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA

Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...

متن کامل

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation.

In order to identify molecular mechanisms involved in striatal development, we employed a subtraction cloning strategy to enrich for genes expressed in the lateral versus the medial ganglionic eminence. Using this approach, the homeobox gene Meis2 was found highly expressed in the lateral ganglionic eminence and developing striatum. Since Meis2 has recently been shown to be upregulated by retin...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 120 2  شماره 

صفحات  -

تاریخ انتشار 2003